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SUMMARY 

Separated flow past a circular cylinder is computed from two finite-difference Navier-Stokes models. Stream 
functions are calculated using a successive-over-relaxation (SOR) procedure. Alternating-direction-implicit 
(ADI) and ‘upwind’ directional difference explicit (DDE) numerical schemes for solving the vorticity- 
transport equation are compared. The ‘upwind’ differencing technique produces artificial viscosity which 
damps the wake and suppresses vortex shedding. It is shown to be unreliable and so the AD1 approach 
is recommended. 

INTRODUCTION AND BRIEF REVIEW OF LITERATURE 

Navier-Stokes finite-difference models of flow past a cylinder have a long history, originating 
well before the invention of computers. The earliest formulation was given by Thom’ in 1933 
in which he solved arithmetically the viscous flow equations in two dimensions by means of 
succesive approximations. Uniform flow past a circular cylinder at  Reynolds numbers 10 and 
20 was examined. 

Using a log-polar co-ordinate transformation Kawaguti2 transformed the flow field onto a 
rectangular mesh and integrated numerically the vorticity transport form of the Navier-Stokes 
equations at a Reynolds number of 40. Central differencing approximations to the vorticity- 
transport and stream function equations were applied at  all node points. Computers were not 
generally available in 1953 and so Kawaguti carried out the computations by hand. 

Time-dependent solutions for the earliest stages of impulsively started symmetric flow at 
Reynolds numbers of 40 and 100 and from 1 to 100 were calculated by Payne3 and Kawaguti 
and Jain: respectively. In 1964, Fromm5 produced a numerical solution for unsteady 
incompressible flow past rectangular obstacles at Reynolds numbers up to 6000. 

A directional difference scheme for non-linear advective terms in the vorticity-transport 
equation and a hybrid mesh structure designed to fit the local flow conditions were devised by 
Thoman and S z e w c ~ y k ~ . ~  and used to present time-dependent solutions for a wide range of 
Reynolds numbers from 1 to lo6 for stationary and rotating cylinders. Asymmetric perturbations 
were added so that alternate vortex shedding would occur behind the cylinder. 

Son and Hanratty’ examined impulsively started symmetric flow at Reynolds numbers up to 
500. At every iteration the vorticity-transport equation was solved by splitting each time step 
into two half steps and solving the two systems of simultaneous equations, formed by 
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central-difference approximations to the flow equations with implicit directional weightings. This 
was based on an alternating-direction-implicit (ADI) method proposed by Peaceman and 
Rachford.' N o  mention is made as to why Son and Hanratty chose the more rigorous AD1 
technique to obtain updated vorticity values. An implicit Crank-Nicolson type integration was 
used by Collins and Dennis" who attempted to examine the development of steady wakes for 
very high Reynolds numbers. They found that for Reynolds numbers greater than 100 the 
procedure broke down after some time and failed to converge. For higher Reynolds numbers 
the integration procedure broke down at early times before an expected secondary vortex 
appeared. 

Rather more attention has been focused on unsteady flow solutions, especially where vortex 
shedding is evident. Ta Phuoc LOC' analysed the growth of primary and secondary vortices at 
Reynolds numbers of 300, 500 and 1000. He used a second-order AD1 method to solve the 
vorticity-transport equation. Although the flow did not reach a stage where vortices were shed, 
Ta Phuoc LOC demonstrated the unsteady nature of the secondary vortices in the wake at early 
flow times. His numerical results agreed with experimental measurements and indicated that the 
AD1 technique could be applicable to high Reynolds number flows. Many numerical models, 
such as those given by Jordan and Fromm,I2 Jain and Rao,13 Jain and Goel,14 Patel,15 Lin, 
Pepper and Lee16 and Martinez17 have been devised to show the unsteady wake developed behind 
a cylinder. They showed that vortex shedding occurs at Reynolds numbers above a critical value 
close to 80. All these authors used simple meshes which restricted the applicable range of Reynolds 
numbers to 400 and under. Jordan and Fromm tried to model a flow at Reynolds number 1000, 
but their mesh was too coarse and they obtained unrepresentative results. Jain and Rao and Jain 
and Goel used straightforward central-differencing to describe the vorticity-transport equation 
with the result that their results were restricted to low Reynolds numbers below 200. Martinez 
used the AD1 method and a technique similar to Pate1 based on Fourier analysis to solve the 
time-dependent equation and obtained satisfactory results up to a Reynolds number of 200. 
Generally, their work agreed with experimental observations. 

Lin, Pepper and Lee16 conducted a survey of three numerial schemes that had been proposed 
by other authors. First, they discussed the DDE-GSI scheme suggested by Thoman and 
Szewczyk6-' in which the vorticity-transport equation was solved by a direction-difference (DDE) 
method and then the stream functions were calculated using a Gauss-Seidel iteration (GSI) 
process. Second, they examined the ADI-SOR method which used an alternating-direction- 
implicit scheme and a, successive-over-relaxation procedure to obtain updated values of vorticity 
and stream functions, respectively. They finally studied a strongly implicit procedure (SIP-SIP) 
method which uses a technique of matrix factorization and elimination to solve both equations. 
They observed that the SIP-SIP and ADI-SOR methods gave better accuracy than the DDE-GSI 
method and that the SIP-SIP method was more economical than the ADI-SOR approach as 
regards computer time. 

Although Lin, Pepper and Lee16 mentioned that the streamline patterns obtained by the 
DDE-GSI method deviated noticeably from those obtained by the other two methods they did 
not elucidate as to what exactly these differences were. They did note that the separation angles 
predicted by the DDE-GSI scheme used by Thoman and Szewczyk6-' were larger than measured 
values and predictions by other authors. Unfortunately, they did not indicate that the DDE-GSI 
method leads to the creation of artificial viscosity which rapidly destroys the vorticity away 
from the cylinder and effectively curtails vortex-shedding at all Reynolds numbers. 

Many authors, such as mar tine^,'^ Son and Hanratty' and Lin and Lee18 have compared 
the effect of mesh sizes and outer boundary conditions for solutions of the Navier-Stokes 
equations. A detailed discussion of the relative merits of different conditions has been given by 
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Roache.lg Most of the authors mentioned in this brief review have given the subject of boundary 
conditions careful attention. 

It is the purpose of this paper to examine in detail ADI-SOR and DDE-SOR methods for 
predicting flow around a cylinder. 

FUNDAMENTAL EQUATIONS 

In polar co-ordinates, the Navier-Stokes equations are given by continuity and momentum 
considerations in an inertial frame of reference as 

av avo 
ar ao divq = V, + r 2  + - = 0, 

where 

and 

1 ar r ae r2 
avo v,av, v,v, 

p -+v,-+--+- 
- 1 aP 1 a avo 1 a v o  2 av, 

r a d  [rat-(  ar ) r2 a e 2  r2 r2 ae 
- + P  -- r- +---- vo + -4, (3) 

where p is the fluid density and p is the fluid kinematic viscosity. 
The vorticity-transport equation is obtained from the (r, 0) momentum equations (2) and (3) 

by cross-differentiating the radial momentum equation with respect to 8 and the angular 
momentum equation with respect to r (after multiplying by r )  and substituting in the vorticity. 
The velocity components V, and V, are defined as 

The vorticity, w, is defined as 

The parabolic vorticity-transport equation is obtained as 

(6) 

where the fluid kinematic viscosity v = p / p ;  and the stream function equation is 
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In order to non-dimensionalize the equations, the following non-dimensional quantities are 
introduced for flow past an infinitely long cylinder of radius r,: 

r’ = r/r , ,  V:  = V, /U , ,  V, = V,/U, ,  (8) 
P - P m  

PU2, 
t ‘ = t U m J r a  and PI=- , etc. 

Three non-dimensional numbers are defined as: 

2 u m  ra Reynolds number, Re = -, 
V 

nu, Keulegan-Carpenter number, K ,  = ~ 

f i r ,  
and 

2 f  ra 
urn 

Strouhal number, S = -, 

where Q is angular velocity and f is the vortex shedding frequency. 
Using these parameters equations (4), (5),  (6) and (7) are rewritten 

transformation 

1 
a 

1 
a 

r l  = , z=-Inr’ ,  

e’=aB; e=-@ 

in dimensionless form. The 

(12) 

(13) 

results in simplification of the previous equations and allows the use of a regular mesh 
for the numerial treatment of the equations. From now on the primes are dropped for convenience. 
Hence the equations become 

Y 

and 

a 2 g  a 2 $  -+-= - E , o ,  
a z 2  a e 2  

where E,  = a2 eZaz. 

NUMERICAL SCHEME 

The log-polar transformation leads to a regular ‘rectangular’ mesh which lends itself to simple 
numerical treatment. The discretized domain is shown in Figure 1. 

The choice of the various discretization parameters has to be undertaken carefully in order 
to gain the best results. Too fine a mesh produces a wasteful, time-consuming computer simulation, 



FLOW AROUND A CYLINDER 279 

r = w  

Figure 1 .  Discretization of domain 

whereas if it is too coarse, the results are inaccurate or unstable. A number of authors, notably 
Lin and Lee," Son and Hanratty,' MartinezI7 and Thoman and Szewczyk6g7 have produced 
comparisons of results obtained for grids with various spacings of Az and AB. They found that 
the presence of at least one grid point within the boundary layer is essential for a meaningful model. 

Thoman and Szewczyk6g7 derived a limiting condition for the time step incorporating diffusion 
and convective vorticity transport conditions. This was based on an analysis which combined 
the Neumann stability criterion and the Courant condition. It should be noted, however, that 
precision and stability contrive to run against each other. Thus, a diminution in grid cell size 
can result in a reduction in time step in order to preserve stability for a fixed Reynolds number. 

At = 002 and Az = A0 = 71/45. 

Martinez17 studied the influence of the location of the outer boundary on the near wake. 
From his work, it was decided to ensure that the outer boundary, roo, was located at a distance 
greater than 80r, from the centre of the cylinder (where r, is the cylinder radius). 

A brief outline of the procedure for solving the flow equations as used in the computer 
programs is given in the flow diagram presented in Figure 2. 

The discretization parameters used here are 

SOLUTION OF THE STREAM FUNCTION EQUATION 

In terms of second-order accurate central difference approximations at  each node the stream 
function equation can be rewritten and rearranged to give 

+ i j + l  $ i j - 1  $ i + l j  +- $ i - l j ) / ( $  + - .  2 ) 
AB2 $ i j :  = E z w i j  + - +- +- { Az2 Az2 AB2 A02 

Thus, a new updated value of the stream function, t,hij, can be obtained at each node using the 
values from the four surrounding nodes. Equation (17) forms the basis of the iterative scheme 
in which the continuity equation is assumed satisfied when the difference between the new and 
old values of stream function is less than a predetermined error parameter E = The iterative 
process is accelerated by the use of a successive over-relaxation parameter R, where 
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Figure 2. Flow chart indicating numerical scheme 
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where I#) is the result of applying equation (17). An optimum value of 0, = 1.72 was used 
throughout. 

SOLUTION OF THE VORTICITY-TRANSPORT EQUATION 

A simple central differencing approximation to the vorticity-transport equation gives unstable 
results except for the lowest Reynolds numbers. Therefore 'upwind' directional difference (DDE) 
and alternating-direction-implicit (ADI) schemes are implemented. 

The 'Upwind' directional differencing formulation 

Rearranging equation (1 5), and using the directional difference explicit (DDE) method, as 
discussed by Thoman and S z e w ~ z y k , ~ , ~  in which forward differencing was used for the awlat 
term, directional differences for the advective terms and central differences for the diffusion terms, 
the vorticity-transport equation is solved to give 

where the superscripts k and k + 1 refer to the time levels. 
This method has been used elsewhere to remedy numerical instabilty, but it introduces an 

artificial viscosity which results in first-order accuracy only. Thoman and Szewczyk6s7 chose it 
because for very high Reynolds numbers it was the only method of six they examined which 
did not require prohibitively small cells to achieve calculational stability. 

Alternating-direction-implicit formulation 

In the AD1 method equation (15) is decoupled numerically by first 'releasing' the equation in 
the &direction while holding the z-components 'fixed', and secondly, 'releasing' the equation in 
the z-direction with the &component 'fixed'. Hence, the following pair of equations is obtained: 

w k +  112 - w k  k + 112 "[ 2 Ez At12 

and 

(20b) 

Equations (20) are approximated using a central difference scheme. With some rearranging the 
following equations can be derived: 
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where 

and 
A6 Re Az Re Ad2 Re Ag2 

a=- 7 b=- , A=- At ' p = = '  4 4 

A tridiagonal system of linear equations has thus been obtained. It is solved by factorization. 
The convection terms in the vorticity-transport equation are approximated here using central 

differences, and so the spatial accuracy is of order (A02,Az2) which is better than that of order 
(A& Az) given by 'upwind' differencing. The AD1 method gives the time based derivatives to 
second-order accuracy as long as the parameters a$/d8 and a$/az are evaluated at the correct 
instant. 

In order to construct the tridiagonal matrices, the boundary conditions must be considered. The 
first directional release requires the implementation of a boundary condition along the axis where 
8 = 0 (or 8 = 27~). It is self evident that w N +  = wij  in the log-polar co-ordinate system shown in 
Figure 1. With the aid of this condition it is possible to set up a matrix of the form 

using equation (22) given before, where 

b l=2+AE, ,  c , = l + a  1 -  

a, = 1 - a( g):, bi = 2 + AEz, c, = 1 + a( g)ij, K ;  = sk, 

The fictitious vorticities wk:'/2 and wf:'/2 contained in the expressions for KT and K g ,  
respectively, are not known beforehand and so they are replaced by the lagged values oij  and 
m i j .  This assumption is reasonable for low values o f j  because it is applied using values taken 
from positions in the mesh close to the cylinder where successive values of vorticity alter least 
in the majority of cases. Using recursion formulae and Cholesky decomposition the matrix 
system given in equation (22) can be solved for the intermediate fictitious vorticities wf; 

The second directional sweep requires the surface and outer boundary conditions to be 
implemented. These are discussed later. The shortened matrix given below is constructed. 
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where 

2 
P T))* i 2  3, u2 = 2 + - E,, c2 = 1 - p( $)12, K ;  = Si+ + oil [ 1 + p( 

E l  Az2 
0. =-- 

The updated values of vorticity c$: are finally obtained by solving equation (24) in the same way 
as equation (22). The AD1 process is now complete. 

CALCULATION OF VELOCITIES 

Using central difference approximations the radial and tangential velocity components, given in 
equation (14), become 

$ i +  1 j -  $ i -  1 j v..= 
2A9E,'I2 

and 

INITIAL CONDITIONS 

Before the time-dependent numerical computations are started it is essential to specify initial 
values of vorticity and stream function throughout the grid. In flow problems of this type it is 
sensible to input potential flow solutions as starting conditions. For the uniform flow case, the 
well-known potential flow result is, 

$*.= 1.l -[Ursine( I,-$)] i j  , 

where the free stream velocity U = 1 and o$ = 0 

BOUNDARY CONDITIONS 

A careful choice of boundary conditions is essential for the numerical scheme to produce results 
of physical significance without making excessive demands on the particular computer used. 
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Sometimes more exact conditions lead to gross costs in computer time and so it is necessary to 
find a sensible balance between the two constraints. This decision relies often on experience. 
The size and shape of mesh also have great influence on the ability of the numerical scheme to 
model the flow behaviour. For example, the mesh is a finite approximation to an unbounded 
domain and in this regular scheme the mesh is too coarse to model boundary layers properly. 
Thus, the boundary conditions must be applied with consideration to the mesh characteristics. 

Assuming a uniform vorticity gradient aw/az = 0 the outer boundary vorticity is given by the 
equation 

(28) O i M  = wi M -  1.  

On the axis where ~9 = 0 or 2n the values of the stream function I) and the vorticity w are not fixed 
and there is a displacement of the upstream line $ = O  (noticeable in uniform 
flows) which is expressed by a periodic oscillation of the upstream stagnation point. This 
displacement results from circulation produced by the alternate vortex shedding mechanism. 
Jordan and Fromm12 developed a correction which takes account of this displacement and is 
added to the uniform flow stream function I,!&, to give the outer boundary stream function I c / i M .  
However, this correction was fond to produce almost the same numerical results as for the 
simple fixed boundary conditions. Thus 

*. i M  =** r M .  (29) 

A forward difference approximation is made to the angular velocity at the outer boundary, 
giving, 

The radial velocity is given in central difference form as 

(30a) 

A simple condition for the surface boundary condition is derived by considering the stream 
function equation in polar co-ordinate form. At the cylinder surface it simplifies to give 

The stream function second derivative is expressed in central difference form. Assuming that the 
stream function inside the cylinder, I)~,,, is the mirror image of the stream function around the 
cylinder t,bi2 because of zero gradient 

For uniform flow past a stationary cylinder (with no slip) the surface boundary stream function, 
radial and tangential velocities are fixed to give 

= V,il = veil = 0. (33) 

CALCULATION OF SURFACE PRESSURE 

In order to evaluate the surface pressures the momentum components of the governing Navier- 
Stokes equations given by expressions (2) and (3) must be reconsidered. The pressure at a large 
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distance from the cylinder (i.e. the outer boundary) is assumed to be zero. The radial momentum 
components are converted to log-polar form, rearranged and rewritten in finite-difference notation 
as 

It is now possible to step in from the outer boundary where P , ,  = 0 and obtain an estimate of the 
surface pressure P , ,  close to the forward stagnation point. 

The tangential component of the Navier-Stokes equation at the cylinder surface can be 
simplified by some manipulation and rewritten in log-polar form to give 

ap 2 a. 
a8 - Re aZ ‘ ---- 

In finite-difference form this becomes 

P i + , = P i + 8 [ y  Re dz i + l  +Eli]. 
(35) 

Using a third-order Lagrange polynomial the relevant vorticity gradients at the surface can be 
obtained from 

[ - 350i1 + 7owi2 - 560 i ,  + 2604, - 5ois] (37) 
1 

and 

(38) 
1 

[ - 3504, , + 700i+ - 5604, + 2604, - 5oi+  4. 

Computation of the surface pressure can now take place using the value of P ,  , already specified 
and stepping around the cylinder in an anticlockwise direction. 

DRAG AND LIFT COEFFICIENTS 

The drag and lift coefficients, C, and C,, respectively, are obtained by performing the following 
integrations using a Simpson’s rule numerical approximation: 

c,= - 

C,= - 

(39) 

(40) 

COMPARISON BETWEEN AD1 AND ‘UPWIND’ DIFFERENCING METHODS 

Lin, Pepper and Lee16 made comparisons between two implicit methods and an ‘upwind‘ 
differencing scheme. Although they mentioned that the ‘upwind‘ differencing approach gave 
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Figure 3. Lift and drag coefficients for Re = 200 using both upwind differencing and A.D.I. schemes 
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different results from those expected, they did not comment further on the method and did not 
present the data they obtained. 

The results given here show categorically that the ‘upwind differencing scheme is unsuitable. 
Figure 3 charts the development of the drag and lift coefficients with time for uniform flow past a 
stationary cylinder at a Reynolds number of 200. The ‘upwind’ differencing scheme gives a drag 
coefficient which decays from an initially high value to a constant close to 0.9 and a lift coefficient 
which is negligible throughout. The results computed from the AD1 scheme show that the drag 
coefficient decays for some time after the impulsive start, then increases somewhat and settles to a 
sinusoidal variation about a mean value of 1.02, whereas the lift Coefficient eventually describes a 
sinusoid of amplitude of 0.61, centred at zero. The difference in results is a direct consequence of the 
excessive numerical damping due to artificial viscosity which is imposed on the flow by the 
‘upwind’ differencing method. This is further illustrated by the stream function and vorticity 
contours in Figures 4 and 5. Figure 4 shows the contours obtained at a time t = 65 using the 

-2.0 

-0.25 

Figure 4. Stream function and vorticity contours for Re = 200 at  t = 65 using upwind differencing scheme 
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2 .o 

Figure 5. Stream function and vorticity contours for Re = 200 at  t = 65 using A.D.I. scheme 

‘upwind’ differencing approach. There is no vortex shedding, just a symmetric pair of Foppl 
vortices behind the cylinder as would be produced experimentally at  a much lower Reynolds 
number of 60, say. The plots obtained from the AD1 scheme, given in Figure 5, show that vortex 
shedding occurs, leading to the establishment of a von Karman vortex street in the wake, in 
concurrence with experimental data2’ at a Reynolds number of 200. 

The results obtained at time t = 65, using the ‘upwind’ differencing approach, are summarized in 
Table I. It should be noted that the separation angles 8, and 8, are measured clockwise and 
anticlockwise, respectively, from the forward stagnation point. The separation angles were 
determined from the surface vorticity distribution. In no case was vortex shedding evident. 
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Table I. Upwind differencing scheme results 

Reynolds 
Number 

Re 

40 
80 

100 
200 
400 

Separation angles 

81 01 

131.0 131.0 
122.6 122.6 
119.9 119.9 
112.5 112.5 
106.9 106.9 

Drag 
coefffkient 

‘d 

Lift 
coefficient 

CL 

1.492 
1.098 
1.008 
0.907 
0.956 

0.0 
0.0 
0.0 
0.0 
0.0 

Table 11. AD1 scheme results 

Reynolds Separation angles Drag Lift 
Number coefficient coefficient 

Re 0, 0 2  cd CL. 

40 126.3 126.3 1.507 0.0 
80 118.4f0.9 1 18.3 f 0.9 1.275 f 0.005 + 0.17 

100 116.5 & 1.4 116.1 1.3 1.215 f 0.01 I0 .26  
200 11 1.5 4.3 11 1.3 f 4.3 1.02 f 0.04 f 0.61 
400 107.1 & 7.0 106.5 f 6.2 1.5 f0.12 & 1.2 

Table I1 contains the equivalent results for the AD1 scheme. Vortex shedding occurs at all 
Reynolds numbers greater than 80, in accordance with experimental data. 

A brief examination of both Tables I and I1 is sufficient to show the substantial disagreerhent 
between the methods. 

A hybrid mesh has also been developed by the author.21 It was used to determine whether the 
‘upwind’ differencing method could induce vortices to detach from the cylinder at high Reynolds 
numbers. Artificial triggering, as suggested by Thoman and S z e ~ c z y k ~ , ~  in which the cylinder was 
given sudden forward and backward rotations, was used in an attempt to initiate the shedding 
process. However, no vortex shedding could be initiated; even at a Reynolds number as high as 
40,000. 

CONCLUSIONS 

The first-order ‘upwind’ differencing (DDE) method recommended by Thoman and S z e ~ c z y k ~ . ~  
gives unsatisfactory results regardless of numerical perturbations or the type of mesh selected. 
Artificial viscosity generated by the scheme damps the flow and prevents vortices detaching from 
behind the cylinder. First order ‘upwind’ differencing is therefore unsuitable for this type of 
separated flow computation. 

Implicit methods for solving the vorticity-transport equation such as the alternating-direction- 
implicit (ADI) scheme are recommended instead. The AD1 method does not create artificial 
viscosity and so provides a more realistic model of laminar fluid flow situations. It may be 
applied to more complicated problems than uniform flow past a cylinder. For example, 
Borthwick21 used the ADI-SOR technique to simulate orbital flow past a cylinder. 
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